Sniffer Detector a Prototype

GSAL IBM Zurich Research Laboratory

http://w3.zurich.ibm.com/Projects/gsal

gsal@zurich.ibm.com

Threat

A sniffer

- listens to every packet transmitted on the network,
- is almost invisible from a network point of view, and
- can retrieve or reconstruct sensitive information passing on the wire.

An attacker can use the captured information to break into a system!

Sniffer Detector - Concept

It is difficult to detect a sniffer directly.

→ Wait for the owner of the sniffer to exploit the information he has collected.

- Generate sessions (information baits).
- Wait for the intruder to re-use the transmitted information.
- Detect it and trigger an alarm!

Options - Packet Generation

There are essentially two ways to generate the sessions:

	Packet forging	Real connections
Complexity	Need to forge all packets, from lowest layer and up	Simple scripts
TCP	Pseudo-random sequence numbers	Natural numbers, diversity of real stack behavior
Simulation	Complete protocol	User interactions only
Resistance to attack	Attackproof: Do not bother of incoming packets	May be the target of stack attacks (SYN flood, Hijacking,)

Options - Architecture

Solution Choice

Multi-host :

- One Manager
- Many Clients/Servers (both physical and logical)
- One or more Probe(s)

Real connections are established — more convincing Temporary configuration — protection against intrusion

Rules, Events & Alarms

1) For each session generated	Manager
 Rules are transmitted to the Probe: Look_host: <i>IP_address</i> Look_protocol: <i>telnet, login, passwd</i> 	
 2) The probe sees a "hot" packet Events are reported to the manager: 	
Hot: $IP_SRC[src_port]$, $IP_DST[dst_port]$ \Box Look_host: IP_DST	

Probe

The manager differentiates between *session* generated events and real attacks:

ALARM to the system administrator

Implementation Aspects (1)

- Manager sends requests to front-ends
- Secure connections via SSH

Prototype:

- Generates Telnet and FTP sessions
- Logins and Passwords as *baits*

Implementation Aspects (2)

- "Commercial" Detector: *Bro*, Lawrence Berkeley Lab (Network Research Group)
- Very good conception, easily upgradable, free

Detects:

- Any TCP or UDP packet with a *hot* IP address.
- Any Telnet or FTP session showing a *hot* login and password **pair**.

Real Environment Test

- Working prototype tested between Zurich (Switzerland) and La Gaude (France).
- Telnet and FTP sessions only.
- So far no sniffer detected!

Conclusions

- We have validated the sniffer detection concept.
- The Sniffer Detector is a new component for the intrusion detection toolbox.

Interested in a Prototype Installation?

What you need:

- Linux-host(s) with IP-aliasing enabled (Bro, Expect, ssh)
- A couple of free IP addresses
- Ethernet segment for the Probe

We welcome remote sites to further test our Sniffer Detector!

Please send e-mail to gsal@zurich.ibm.com