
LIDS Hacking HOWTO

Xie Huagang, xie@lids.org, http:/www.lids.org/ v 1.0, 29 March 2000

This Document is for LIDS (Linux Intrusion Detection System) Project and mainly about the impletementation

of LIDS in the kernel. The target of the LIDS is to enhance the current Linux Kernel, to make it more solidate

and more secure. In order to accomplish the target, LIDS uses the current Linux kernel resouce and adds on

some security features. In this HOWTO, I will say something about the LIDS internal to those who concern the

inplementation of LIDS. If you want to know how to use LIDS, please refer to LIDS HOWTO.

Contents

1 Introduction 2

1.1 What is wrong with the current GNU/Linux system. 2

1.2 What is the idea behide LIDS. 3

2 Protect File System 4

2.1 Protect important �les. 4

2.2 How LIDS protect �les in kernel. 4

2.2.1 Linux Filesystem data struct and routines. 4

2.2.2 LIDS Data Struct for protection. 5

2.2.3 Protected system call in the kernel. 7

3 Protect Devices , Raw I/O access. 8

3.1 Device, Raw I/O in kernel . 8

3.2 How to protect by LIDS. 8

4 Protect Important Process. 9

4.1 unkillable process. 9

4.2 hidden process. 10

4.2.1 How to hide process. 10

5 Sealing the Kernel. 12

5.1 Sealing kernel with the LIDS. 12

5.1.1 Protect program before sealing the kernel. 14

6 LIDS with Capability 14

6.1 Capability in kernel. 14

6.2 Capability in LIDS. 16

7 LIDS Security Level in kernel. 17

7.1 two levels in the kernel. 17

7.2 Change security level online with lidsadm. 18

7.2.1 Authentication with kernel. 18

7.2.2 switch with LIDS & LIDS_GLOBAL . 19

8 Network security in kernel. 19

8.1 Firewall and routing rules protection. 19

8.2 Disable Sni�er . 20

8.3 Port scanner detector in kernel. 21

8.3.1 Why need a port scanner detector in the kernel. 21

8.3.2 Port scanner detector in kernel . 21

9 Intrusion Response System 22

9.1 Allow logging in a security way . 23

9.2 hangup the console. 23

9.3 Notify the Administrator by mail and pager. 23

10 Thanks . 23

1 Introduction

With increasing popularity of Linux on Internet , more and more security holes are found in the current

GNU/Linux system. You may hear from the Internet that �ooh, There are bugs found in Linux, which will

cause the system to be easily compromised by hacker.

Since the Linux is an art of open source community, security holes can be found easily and can also be

patched quickly. But when the hole is disclose to the public, and the administrator is too lazy to patch the

hole. It is very easy to break into the current system and it is worse that the hacker can get the root shell.

With the current GNU/linux system, he can do whatever he want. Now, you may ask, what is the problem

and what can we do?

1.1 What is wrong with the current GNU/Linux system.

� superuser (root) may abuse the rights

Being a root, he can do whatever he want. Even the capability existing in the current the system. As

a root, he can easily change the capability.

� Many system �les can be changed easily.

There are many important �les, such as /bin/login, in the system. if the hacker come in, he can upload

a changed login program to replace /bin/login , so he can relogin without any login name of password.

But the �les do not need to chang frequently, unless you want to upgrade the system.

� Modules is easily used to intercept the kernel.

Module is a good design for the linux kernel to make the linux kernel more modulized and more

felixible. But after the modules inserted into the kernle, it will be part of the kernel and can do what

the original kernel can do. Therefore some unfriendly code could be written as a modules and inserted

into to kernel, the code can even redirect the system call and act like a virus.

� Process is unprotected.

Certain processes, such as web server daemon, which are critical to to system is not under strict

protection. Therefore, there are vulnerable to the attack of hackers.

1.2 What is the idea behide LIDS.

� To protect important �les.

Since the �les can be easily changed by root, why not restrict the �le operation ? so, LIDS change the

�le system call in the kernel to enhance security. Every time someone access a �le, he will involve in a

system call and then we can check the �lename and see whether the �le has been protected or not. If

it has been protected, we can then deny the request of the visitor.

� To protect important process.

There is a little bit di�erent from the above idea to protect the process. When a process is running in

the system, he will have an entry to the /proc �lesystem with a pid as diretory name, so if you type

"ps -axf" you can display the current running processes.

You may wonder how to protect certain process. If you want to kill a process, �rstly, you type "ps" to

get the process's PID, secondly, you type "kill <pid>" to kill it.

If I makethe process invisible to you, how can you kill the process? Therefore, what LIDS does to

protect the process is to hide the process from everybody.

Another important method is to protect some important process is to make it unkillable by anybody,

include root. LIDS can protect the process whose parent is init (pid = 1).

� To seal the kernel.

Since we want to insert some necessary modules into the kernel for use , we also don't allow anybody

include root to insert the modules. How to balance this to pardox things. Well, we can use the concept

provided and �rst impletemetated by John Carol Langford (jcl@gs176.sp.cs.cmu.edu). We just

allow the system insert the modules into the system while the system boot up, then we seal the kernel,

after sealing, the kernel do not allow anyone to insert modules into the kernel. Using the seal concept,

we can use it to protect the important �les, process � we just change the necessary �les or run the

necessary process while the system is booting up, and after sealing the kernel, we can not make any

change on the �les again.

y

2 Protect File System

The most important job LIDS do is to protect the �le system. It is impletementated in the VFS(virtual

File System) layer in the kernel.For that reason, we can protect any kind of �lesystem, such as EXT2, FAT.

2.1 Protect important �les.

In the LIDS, the protected �les are devided into catelog shown below,

� Read Only Files/Diretory.

Read only �les means that they do not allow any changer, for example, �les in the diretory of usrsbin/,

sbin.

This kind of �les mostly are binary system program or system con�guration �les, we do not need to

change them unless system upgrade.

� Append Only Files/Directory.

The Append �les catalog is only for the �les whose size only allow to grow . Most system log �les,

such as �les in /var/log, are append only �les.

� Exeception Files/Directory.

The �les is not to protected. In some case, you want to protect the whole directory but also want some

speci�ed �le to be unprotected, so we can de�ned the �les as exeception and the diretory as read-only.

� Protection mouting/umouting �les system .

When you mount �lesystem after system boot up, you can disable anybody, include root, to umount

the �lesystem. You can also disable anybody to mount a �lesystem to overlap the current �lesystem.

2.2 How LIDS protect �les in kernel.

In this section, we will view some kernel source let you understand how LIDS protect �les.

2.2.1 Linux Filesystem data struct and routines.

Firstly, we must understand the virtual �lesytem in linux.

Every �le in the linux, whatever the �lesytem he reside on, has an inode number, the �les system provide

the following data struct.

in the /usr/src/linux/include/linux/fs.h

struct inode {

struct list_head i_hash;

struct list_head i_list;

struct list_head i_dentry;

unsigned long i_ino; ----> inode number.

unsigned int i_count;

y

kdev_t i_dev; ----> device number.

umode_t i_mode;

nlink_t i_nlink;

uid_t i_uid;

......

}

Note: <i_ino ,i_dev> used to be a identi�cation of an inode.That means that you can use the pair

<i_ino,i_dev> to get a unique inode from the system.

in the /usr/src/linux/include/linux/dcache.h

struct dentry {

int d_count;

unsigned int d_flags;

struct inode * d_inode; /* Where the name belongs to - NULL is negative */

struct dentry * d_parent; /* parent directory */

struct dentry * d_mounts; /* mount information */

struct dentry * d_covers;

struct list_head d_hash; /* lookup hash list */

struct list_head d_lru; /* d_count = 0 LRU list */

struct list_head d_child; /* child of parent list */

struct list_head d_subdirs; /* our

......

}

The dentry is a entry of a �le in diretory. Using the dentry, we can easily trave through the �le's parent

diretory.

For example, if a �le's inode is (struct inode *)�le_inode, you can use file_inode->d_entry to get its

diretory entry and then use file_inode->d_entry->d_parent to get its parent diretory's entry.

2.2.2 LIDS Data Struct for protection.

After the above analyzing of the linux �le system, let's have a look at how LIDS uses the VFS to protect

�les and diretories.

/* in /usr/src/linux/fs/lids.c */

struct secure_ino {

unsigned long int ino; /* the inode number */

kdev_t dev; /* the dev number */

int type; /* the file type */

};

The above struct is used to store the protected �le or directorie's inode with the pair <ino,dev>."type" is

used to indentify which type the protected inode(�le).

LIDS has 4 type,

/* in /usr/src/linux/incluce/linux/fs.h */

y

#define LIDS_APPEND 1 /* APPEND ONLY FILE */

#define LIDS_READONLY 2 /* Read Only File */

#define LIDS_DEVICE 3 /* Protect MBR Writing to device */

#define LIDS_IGNORE 4 /* Ignore the protection */

With the secure_ino struct, we can easily initial the protected �les or diretories into the kernel with the

�ollowing functions,

/* in /usr/src/linux/fs/lids.c */

int lids_add_inode(unsigned long int inode ,kdev_t dev , int type)

{

if (last_secure == (LIDS_MAX_INODE-1))

return 0;

secure[last_secure].ino = inode;

secure[last_secure].dev = dev;

secure[last_secure].type = type;

secure[++last_secure].ino = 0;

#ifdef VFS_SECURITY_DEBUG

printk("lids_add_inode : return %d\n",last_secure);

#endif

return last_secure;

}

As you can see from the above code, it is very easy to add a given inode into the secure_ino. Pro-

tected inodes are initialized during the system boot. The initial routine is init_vfs_security() in

/usr/src/linux/fs/lids.c.

And now, let's have a look at how the LIDS check whether an inode is being protected,

/* /usr/src/linux/fs/open.c */

int do_truncate(struct dentry *dentry, unsigned long length)

{

struct inode *inode = dentry->d_inode;

int error;

struct iattr newattrs;

/* Not pretty: "inode->i_size" shouldn't really be "off_t". But it is. */

if ((off_t) length < 0)

return -EINVAL;

#ifdef CONFIG_LIDS

if (lids_load && lids_local_load) {

error = lids_check_base(dentry,LIDS_READONLY);

if (error) {

lids_security_alert("Try to truncate a protected file (dev %d %d,inode %ld)",

y

MAJOR(dentry->d_inode->i_dev),

MINOR(dentry->d_inode->i_dev),

dentry->d_inode->i_ino);

.....................

This is an example that LIDS add checking in kernel. You can see that the function lids_check_base() is

one of core functions for the lids protection method.

You can see lids_check_base() in many place where LIDS want to protect, especially in fs subdiretory of

linux kernel.

/* in /usr/src/linux/fs/lids.c */

int lids_check_base(struct dentry *base, int flag)

{

..................

inode = base->d_inode; /* get the inode number */

parent = base->d_parent; /* get the parent diretory */

.................

----> do {

if (inode == parent->d_inode)

break;

if ((retval = lids_search_inode(inode))) {

if (retval == LIDS_IGNORE ||

(retval == LIDS_DEVICE && flag != LIDS_DEVICE))

break;

if (flag == LIDS_READONLY ||

(flag == LIDS_APPEND && retval >flag) ||

(flag == LIDS_DEVICE && flag == retval)) {

return -EROFS;

}

break;

}

inode = parent->d_inode;

} while(((parent = parent->d_parent) != NULL));

return 0;

}

lids_check_base() check if the given dentry of a �le and it's parent diretories have been protected.

Note: If the its parent diretory is protected, the �le is also protected.

For example, if "/etc/" has been protected, the "/etc/passwd" is also protected.

2.2.3 Protected system call in the kernel.

In order to protect the �lesystem, LIDS insert a checking in the begin of some critical system call. Therefore,

we can protect the system call and restrict user using the �lesystem.

Here we list some example,

, /

� open(), open is used for protect open some �les protected with the disallowed permission. You can see

the lids checking code in open_namei() when open call.

� mknod(), mknod is used to protect the mknod in the giving diretory.

� unlink(). check do_unlink() in kernel source.

3 Protect Devices , Raw I/O access.

Devices in linux are present as �les in "/dev/", we can use the method of protecting �les above to protect

devices. But in some case, user can also use the IO operation to bypass the �lesystem to read/write the

device, we must consider that case.

3.1 Device, Raw I/O in kernel

Devices in GNU/Linux system are present as �les, so we can protect it using the same method as protecting

�lesystem.

User space raw I/O access is proformed by the system call sys_operm and sys_iopl. You can have a

look at /usr/src/linux/arch/i386/kernel/ioport.c. This is a archetecture dependence and if we port to other

hardware platform, we need to take care about that.

3.2 How to protect by LIDS.

Most of time, application do not need to access the device via the device �le name in "/dev/". But some

paticular application need to access it directly, such as the X Server, which will write to the /dev/mem

and even raw I/O. We need some exception when protect the device. LIDS de�ne the exeception when

con�gurate the Kernel.

� CONFIG_LIDS_ALLOW_DEV_MEM, If you selecte it on, you can allow some speci�ed program

to access the /dev/mem and /dev/kmem which is very critical for the kernel. If you want to use X

Server System in the kernel, select this and provide the whole path and �lename when con�gurate the

kernel.

� CONFIG_LIDS_ALLOW_RAW_DISKS, If you select it on, you can allow some speci�ed program

to access the raw disk.

� CONFIG_LIDS_ALLOW_IO_PORTS, If you selecte it on, you can allow some speci�ed program to

access the I/O port.

The initialization is called when the system in init_vfs_security() infs/lids.c.

#ifdef CONFIG_LIDS_ALLOW_DEV_MEM

lids_fill_table(allow_dev_mem,&last_dev_mem,LIDS_MAX_ALLOWED,CONFIG_LIDS_DEV_MEM_PROGS);

#endif

#ifdef CONFIG_LIDS_ALLOW_RAW_DISKS

lids_fill_table(allow_raw_disks,&last_raw_disks,LIDS_MAX_ALLOWED,CONFIG_LIDS_RAW_DISKS_PROGS);

p

#endif

#ifdef CONFIG_LIDS_ALLOW_IO_PORTS

lids_fill_table(allow_io_ports,&last_io_ports,LIDS_MAX_ALLOWED,CONFIG_LIDS_IO_PORTS_PROGS);

#endif

And then, when a process(program) want to access the io port or raw disks directly, LIDS will check if it

is an exeception de�ned in arrary (allow_raw_disks , last_io_ports,etc.). The checking is performed by

lids_search_inode(inode) which is called by lids_check_base().

For example, let's look at the CONFIG_LIDS_ALLOW_DEV_MEM.

/* in lids_search_inode() */

#ifdef CONFIG_LIDS_ALLOW_DEV_MEM

for(i = 0 ; i < last_dev_mem ;i++) {

if (allow_dev_mem[i].ino == ino && allow_dev_mem[i].dev == dev) {

return LIDS_READONLY;

}

}

#endif

#ifdef CONFIG_LIDS_ALLOW_RAW_DISKS

We can see that the allow_dev_mem contains the inodes of the allowed programs which are initialized in the

init_vfs_security() when booting. Using the same method, we can protect raw device ,I/O access, etc,

except some speci�ed programs.

4 Protect Important Process.

Processes are the active entries in the operation system. There are two speci�ed process in the kernel, process

id 0 (swapd) and process 1(init). The init process is parent of all process runing after the system booting.

4.1 unkillable process.

As you can see that if someone gains the root privilege, he can easily kill any process by sending special

signal to that process . In order to kill a process, he must past the pid of the process in the kernel, and then

use the pid to kill it.

The system call used to kill process is kill(), which is impletementedsys_kill() in kernel.

Let's look at the code with LIDS protection.

/* in /usr/src/linux/kernel/signal.c */

asmlinkage int

sys_kill(int pid, int sig)

{

struct siginfo info;

#ifdef CONFIG_LIDS_INIT_CHILDREN_LOCK pid_t this_pid;

int i;

p

#ifdef CONFIG_LIDS_ALLOW_KILL_INIT_CHILDREN

if (!(current->flags & PF_KILLINITC))

#endif

if (lids_load && lids_local_load && LIDS_FISSET(lids_flags,LIDS_FLAGS_LOCK_INIT_CHILDREN)) {

this_pid = pid>0?pid:-pid;

for(i=0;i<lids_last_pid;i++) {

if(this_pid == lids_protected_pid[i]) {

lids_security_alert("Try to kill pid=%d,sig=%d\n",pid,sig);

return -EPERM;

}

}

}

#endif

...

}

You can see that there are two tags in kernel,CONFIG_LIDS_INIT_CHILDREN_LOCK and

CONFIG_LIDS_ALLOW_KILL_INIT_CHILDREN.

With the CONFIG_LIDS_INIT_CHILDREN_LOCK on, LIDS can protect the initial runing up process.

For example, if you running inetd on the system, you bring it up before sealing the kernel. After that, you

can not kill it. But if someone telnet to the server, inetd will bring up a child process to serve the user, this

child process can not be protect by LIDS, because the user can be exit and then kill the process at any time.

4.2 hidden process.

Another method to protect process is to hide the process. when a hacker compromise you system, he will

login, and then look around if there are some known processes are watching him, and then he will kill them.

If you hide the process by this feature, the hacker will not know anything about the process and then you

can log anything he done on the system.

4.2.1 How to hide process.

In order to hide the process, you need to provide the full pathname while con�gurate the kernel.

When the kernel boot up, LIDS will pick up the �lename's inode into a structure named proc_to_hide[],

/* include/linux/sched.h */

#ifdef CONFIG_LIDS_HIDE_PROC

#define PF_HIDDEN 0x04000000 /* Hidden process */

#endif

/* in fs/lids.c */

#ifdef CONFIG_LIDS_HIDE_PROC

struct allowed_ino proc_to_hide[LIDS_MAX_ALLOWED];

int last_hide=0;

#endif

....

p

/* in fs/lids.c , init_vfs_security(),

fill up the hidden process in proc_to_hide[]

*/

#ifdef CONFIG_LIDS_HIDE_PROC

lids_fill_table(proc_to_hide,&last_hide,LIDS_MAX_ALLOWED,CONFIG_LIDS_HIDDEN_PROC_PATH);

#endif

PF_HIDDEN is used to make the kernel to check if the process can be seen when user issue a "display

process information" command, for example the command "ps -a". If a process has been marked as hidden

process by LIDS, when it exec, the process will get an attribute of PF_HIDDEN. Then, when the system

output processes information to the user program, it will check if the current output process own a �ag

PF_HIDDEN. If found, it will not output any information about the process.

/* in fs/exec.c */

int do_execve(char * filename, char ** argv, char ** envp, struct pt_regs * regs)

{

...

if (retval >= 0) {

#ifdef CONFIG_LIDS_HIDE_PROC

if (lids_search_proc_to_hide(dentry->d_inode))

current->flags |= PF_HIDDEN;

...

Since every process in linux has a entry in /proc �lesystem, we also need to make the proc �le entry of the

hidden process insivible to users.

/* fs/proc/root.c , to make the proc fs invisibe to the hidden process*/

static struct dentry *proc_root_lookup(struct inode * dir, struct dentry * dentry)

{

...

inode = NULL;

#ifdef CONFIG_LIDS_HIDE_PROC

if (pid && p && (! ((p->flags & PF_HIDDEN) && lids_load && lids_local_load))) {

#else

if (pid && p) {

#endif

unsigned long ino = (pid >> 16) + PROC_PID_INO;

inode = proc_get_inode(dir->i_sb, ino, &proc_pid);

if (!inode)

return ERR_PTR(-EINVAL);

inode->i_flags|=S_IMMUTABLE;

}

...

}

Then if the process is marked as PF_HIDDEN, it will not display in the proc �lesystem.

g

5 Sealing the Kernel.

We need do some necessary operation when system booting up, but also we need to provent the operation

when system is running.

For example, we need to insert the needed modules into the kernel, but we dont want any module to be

inserted when the system is running because it is very dangerous. How to sulute this problem? here comes

the seal idea. we can do what we want to do during the system booting, and then we seal the kernel. After

that, we can not do the same thing as what we can do before sealing. With the sealing ideas, we can solute

the problem with modules, we can insert the needed modules into kernel before sealing and don't sallow any

modules inserted and deleleted after sealing.

5.1 Sealing kernel with the LIDS.

In order to seal the kernel, in LIDS , we use the command

#lidsadm -I -- -CAP_xxx...

It can be put in the script which can be run by init when system booting up. The detials about capability

is in LIDS HOWTO written by biodi. What the lidsadm do is to communicate with kernel via the �le

/proc/sys/lids/locks.

When you seal the kernel, the lidsadm call lids_init() in lidsadm.c.

/* in lidsadm.c */

#define LIDS_LOCKS "/proc/sys/lids/locks"

......

void lids_init(int optind, int argc, char *argv[])

{

......

if ((fd=open(LIDS_LOCKS,O_RDWR)) == -1) {

perror("open");

exit_error (2, "can't open " LIDS_LOCKS);

}

if (read(fd,&locks,sizeof(lids_locks_t))==-1) {

perror("read");

exit_error (2, "can't read " LIDS_LOCKS);

}

lids_set_caps(optind,argc,argv,&locks);

locks.magic1=LIDS_MAGIC_1;

.........

if (write(fd,&locks,sizeof(lids_locks_t))==-1) {

perror("write");

exit_error (2, "can't write " LIDS_LOCKS);

}

.....

}

g

The system call write the new variant locks to the LIDS_LOCKS, the kernel will read it via the function

lids_proc_locks_sysctl(). The lids_proc_locks_sysctl will do some sanity check and read the locks

from user space and perform the capability changed and then change the value of the sealing variant �

lids_first_time to 0.

Let's have a look at lids_proc_locks_sysctl(). This function is called by kernel when someone read/write

the /proc/sys/lids/locks.

int lids_proc_locks_sysctl(ctl_table *table, int write, struct file *filp,

void *buffer, size_t *lenp, int conv, int op)

{

...........

/* first: check the terminal and the program which access the sysctl */

#ifndef CONFIG_LIDS_REMOTE_SWITCH

if (current->tty && (current->tty->driver.type != 2)) {

lids_security_alert("Try to %s locks sysctl (unauthorized terminal)",

write ? "write" : "read");

return -EPERM;

}

#endif

........

/* second: check wether it is not a timeout period after two many failed attempts */

.......

if (write) {

/* Third : check what is submitted (size, magics, passwd) */

if (*lenp != sizeof(lids_locks_t)) {

lids_security_alert("Try to feed locks sysctl with garbage");

return -EINVAL;

}

if (copy_from_user(&locks,buffer,sizeof(lids_locks_t)))

return -EFAULT;

.......

if ((lids_first_time) && (!locks.passwd[0])) {

.........

number_failed=0;

if (lids_process_flags(locks.flags)) {

cap_bset=locks.cap_bset;

lids_security_alert("Changed: cap_bset=0x%x lids_flags=0x%x",cap_t(cap_bset),l

}

Change flag here ..--> lids_first_time=0;

.....

}

The function above is to do the real job when sealing the kernel or change the kernel security level. The

variant lids_first_time is a �ag indicating that the current state is before-sealing or after-sealing. After

change the requried capability bit, the �ag change to 1 indicating that the current state is after-sealing.

p y

Sealing kernel has two tasks, �rstly, change the capability bit with the requried parameter, secondly, change

the lids_first_time �ag to 1. After the sealing, the system will not allow change the capability without

using lidsadm and a password.

5.1.1 Protect program before sealing the kernel.

Since the state before sealing is dangerous, we should know that the program running before sealing is

protected by LIDS. Why ? because we must gurantee that the on-going program can not be changed after

sealing. If the �les is not protected, someone may change the program and then after reboot, the program

can also do harm to the system. Let's look at the code about the warning about the unprotected program

running before sealing.

int do_execve(char * filename, char ** argv, char ** envp, struct pt_regs * regs)

{

..........

#ifdef CONFIG_LIDS_SA_EXEC_UP

if (lids_first_time && lids_load) {

if (!lids_check_base(dentry,LIDS_READONLY))

#ifdef CONFIG_LIDS_NO_EXEC_UP

lids_security_alert("Try to exec unprotected program %s before sealing LIDS",filename)

if (dentry)

dput(dentry);

return -EPERM;

#else

lids_security_alert("Exec'ed unprotected program %s before sealing LIDS",filename);

#endif

}

}

#endif

......

}

You can see that when LIDS protected system is on (lids_load == 1) and the current system is no

sealed(lids_�rest_time is 1), kernel will check if the current program is under protected by LIDS by

lids_check_base(). If it is not protected, it will raised warning message.

6 LIDS with Capability

Capability is a set of bit to indicate what a process can do. In LIDS, we use capability to limite the capability

of all process.

6.1 Capability in kernel.

The capability in kernel is a 32-bit long varient to indicate what the current process can do. The di�nition

of capability in kernel as following shown.

p y

/* in include/linux/capability.h */

typedef struct __user_cap_header_struct {

__u32 version;

int pid;

} *cap_user_header_t;

typedef struct __user_cap_data_struct {

__u32 effective;

__u32 permitted;

__u32 inheritable;

} *cap_user_data_t;

#ifdef __KERNEL__

/* #define STRICT_CAP_T_TYPECHE

#ifdef STRICT_CAP_T_TYPECHECKS

typedef struct kernel_cap_struct {

__u32 cap;

} kernel_cap_t;

#else

typedef __u32 kernel_cap_t;

#endif

kernel_cap_t cap_bset = CAP_FULL_SET;

Every bit of the kernel_cap_t present a kind of permission(capability). cap_bset is the base of all capability

set. It's value can be change by writing to /proc/sys/kernel/cap-bound.

Look at same �le as shown above, you will �nd something like that:

/* in include/linux/capability.h */

/* In a system with the [_POSIX_CHOWN_RESTRICTED] option defined, this

overrides the restriction of changing file ownership and group

ownership. */

#define CAP_CHOWN 0

/* Override all DAC access, including ACL execute access if

[_POSIX_ACL] is defined. Excluding DAC access covered by

CAP_LINUX_IMMUTABLE. */

#define CAP_DAC_OVERRIDE 1

p y

/* Overrides all DAC restrictions regarding read and search on files

and directories, including ACL restrictions if [_POSIX_ACL] is

defined. Excluding DAC access covered by CAP_LINUX_IMMUTABLE. */

#define CAP_DAC_READ_SEARCH 2

.........

You will get what is the exactly meaning of each capability in this �le and the LIDS HOWTO written by

Boidi.

Each task(process) has three member de�ned in struct task_struct: cap_effective, cap_inheritable,

cap_permitted. We have list a varient cap_bset which indicate a base capability. It check the whole system

and determin what kinds of capabilty to control the system.

In most of the system call implementated in kernel, they will call the function capable()(in kernel/sched.c)

in the begin of that function. It then call cap_raised() (in include/linux/capability.h) which is shown

below,

#ifdef CONFIG_LIDS_ALLOW_SWITCH

#define cap_raised(c, flag) ((cap_t(c) & CAP_TO_MASK(flag)) && ((CAP_TO_MASK(flag) & cap_bset) || (!lids_load

#else

#define cap_raised(c, flag) (cap_t(c) & CAP_TO_MASK(flag) & cap_bset)

#endif

You will see that the cap_bset (it is all "1" by default) is very important here. If we set some bits to

0 in it, the capabilties they present will be disable in the whole system. For example, 18th bit represent

CAP_SYS_CHROOT, if we set it to "0", it means that we can not chroot anymore.

If you look at the source code of sys_chroot, you will �nd that it will check the capability by following,

if (!capable(CAP_SYS_CHROOT)) {

goto dput_and_out;

}

The capable() will return 0 for the bit 18 is 0 and then the chroot will return an error to the user.

6.2 Capability in LIDS.

LIDS use capability to restrict the whole process's action. The function used by LIDS is capable(). With

many existing capable() in the kernel source, we can disable some capabilities default by the current system

and also give some warning when user violate the rules de�ned by LIDS.

As for the administrator, he can also change the capability by lidsadm and a password. After the kernel

authenticate the user, the capability variant cap_bset will be changed.

The most important thing for an administrator is to understand what exactly each capabilitiy means and

know what he want on the system. After that, disable the capabilities when sealing the kernel and change

them on the �y with a password.

y

7 LIDS Security Level in kernel.

At some time, we need to change the protected system, How can we do? LIDS provide two way.

� First, you can reboot the system and enter "security=0" when "LILO:" appear on the screen.

� Secondly, you can also switch the security level online by giving a password with the command "lidsadm

-S".

7.1 two levels in the kernel.

LIDS de�nes two levels in kernel, security and none_security. By default, the security is on. If you want to

change it, enter "security=0" after reboot the system.

There is a grobal variant in the kernel name lids_load, it indicates whether the lids security system is on or

not. It is default to "1" (on) by default. If you input "security=0" when LILO appear, the lids_load will set

to "0", and all security protection by LIDS will be bypassed. It is like the system without LIDS protection.

/* variant defined in fs/lids.c */

int lids_reload_conf=0;

int lids_load=0; /* it is raised to 1 when kernel boot */

int lids_local_on=1;

int lids_local_pid=0;

/* in init/main.c */

#ifdef CONFIG_LIDS

/*

* lids_setup , read lids info from the kernel.

*/

static void __init lids_setup(char *str, int *ints)

{

if (ints[0] > 0 && ints[1] >= 0)

====> _lids_load= ints[1];

}

#endif

....

/* init the LIDS when the system bootup up */

static void __init do_basic_setup(void)

{

......

/* Mount the root filesystem.. */

mount_root();

#ifdef CONFIG_LIDS

/* init the ids file system */

---> lids_load=_lids_load;

lids_local_on=_lids_load;

lids_flags=lids_load * (LIDS_FLAGS_LIDS_ON | LIDS_FLAGS_LIDS_LOCAL_ON);

===> printk("Linux Intrusion Detection System %s \n",lids_load==1?"starts":"stops");

init_vfs_security();

y

#endif

......

}

When the system boots up, you can see " Linux Intrusion Detection System 0.9 starts " when lids protection

switch on or "Linux Intrusion Detection System 0.9 stops" when the security o�. "0.9" is the current LIDS

version.

7.2 Change security level online with lidsadm.

At some times, you may also want to change the security level online, you must turn the

CONFIG_LIDS_ALLOW_SWITCH on and also provide a the "RipeMD-160 encrypted password" �eld when con-

�gurate the kernel before compiles.

The password can be obtained by running the command "lidsamd -P".

7.2.1 Authentication with kernel.

With the provided password, LIDS can use authenticate the user who can switch the kernel security level on

and o�.

It is also performed by lidsadm with parmeter "-S", for example,

/sbin/lidsadm -S -- -LIDS

SWITCH

Password:xxxxxx

#

After input the correct password, you can swith the lids security o�.

Let's look at the code internal to see how it does,

/* in the fs/lids.c lids_proc_locks_sysctl() */

int lids_proc_locks_sysctl(ctl_table *table, int write, struct file *filp,

void *buffer, size_t *lenp, int conv, int op)

{

lids_locks_t locks;

byte hashcode[RMDsize/8];

char rmd160sig[170];

.......

locks.passwd[sizeof(passwd_t)-1]=0; /* We don't take the risk */

rmd160sig[0]=0;

#ifdef CONFIG_LIDS_ALLOW_SWITCH

if ((!lids_first_time) || (locks.passwd[0])) {

RMD((byte *)locks.passwd,hashcode);

memset((char *)locks.passwd,'\0',sizeof(passwd_t));

for (i=0; i<RMDsize/8; i++)

sprintf(rmd160sig+2*i,"%02x", hashcode[i]);

}

if (((lids_first_time) && (!locks.passwd[0])) ||

y

----------> (!strncmp(rmd160sig,CONFIG_LIDS_RMD160_PASSWD,160))) {

#else

if ((lids_first_time) && (!locks.passwd[0])) {

#endif

/* access granted ! */

number_failed=0;

if (lids_process_flags(locks.flags)) {

cap_bset=locks.cap_bset;

lids_security_alert("Changed: cap_bset=0x%x lids_flags=0x%x",cap_t(cap_bset),l

}

lids_first_time=0;

}

........

}

After the password checking is ok, the lids_process_flag() change the current lids �ag with LIDS o� and

then you can do what you want to do. You can look at the code at fs/lids.c of lids_process_flag for

detail.

7.2.2 switch with LIDS & LIDS_GLOBAL

If you switch the LIDS protection o�, you have two choice, �rstly, switch o� and on other console it is also

unprotected by LIDS, secondly, you can switch o� only locally, on other console, all the system also protected

by LIDS. It can improve security.

The detail impletmetation is in fs/lids of lids_process_flag().

8 Network security in kernel.

With LIDS, you can protect you network with some features shown below.

8.1 Firewall and routing rules protection.

If you host also contains some �rwall rules. you can protect them by LIDS. You should turn the

CONFIG_LIDS_ALLOW_CHANGE_ROUTES on. And you must turn the CAP_NET_ADMIN o� when sealing the kernel.

And then, you can also de�ne allowed programs to change the routing rules.

Let's look at the code of Firewall rules protection. Every request to change the �rewall rules will called the

kernel function ip_setsockopt().

int ip_setsockopt(struct sock *sk, int level, int optname, char *optval, int optlen)

{

........

switch(optname)

{

.......

case IP_FW_DELETE_NUM:

case IP_FW_INSERT:

y

case IP_FW_FLUSH:

case IP_FW_ZERO:

case IP_FW_CHECK:

case IP_FW_CREATECHAIN:

case IP_FW_DELETECHAIN:

case IP_FW_POLICY:

#ifdef CONFIG_LIDS_ALLOW_CHANGE_ROUTES

if (!(capable(CAP_NET_ADMIN) || (current->flags & PF_CHROUTES))) {

#else

if (!capable(CAP_NET_ADMIN)) {

#endif

#ifdef CONFIG_LIDS

lids_security_alert("CAP_NET_ADMIN violation: try to change IP firewall rules

#endif

return -EACCES;

}

........

From the above code, we can see that if you want to change the �rewall rules, you must turn the capabilty

CAP_NET_ADMIN on and the program you use to change the rules must be marked as routing_changeable.

The program name shoud be provided when the con�gurate the kernel.

8.2 Disable Sni�er

The feature is inpletemented as the above changing_route, let's have a look at the code at net/core/dev.c.

int dev_ioctl(unsigned int cmd, void *arg)

{

........

switch(cmd)

{

........

case SIOCSIFMETRIC:

case SIOCSIFMTU:

case SIOCSIFMAP:

case SIOCSIFHWADDR:

case SIOCSIFSLAVE:

case SIOCADDMULTI:

case SIOCDELMULTI:

case SIOCSIFHWBROADCAST:

case SIOCSIFTXQLEN:

case SIOCSIFNAME:

#ifdef CONFIG_LIDS_ALLOW_CHANGE_ROUTES

if (!(capable(CAP_NET_ADMIN) || (current->flags & PF_CHROUTES))) {

#else

if (!capable(CAP_NET_ADMIN)) {

#endif

#ifdef CONFIG_LIDS

lids_security_alert("CAP_NET_ADMIN violation: ioctl SIOC #%i",cmd);

#endif

y

return -EPERM;

.........

You can see that if you want to change the promiscous state needed for sni�er, you must have capability

CAP_NET_ADMIN on and a corrent program. You should disable the promiscouse state when the network bring

up before sealing the kernel and make the CAP_NET_ADMIN o� when sealing the kernel.

8.3 Port scanner detector in kernel.

8.3.1 Why need a port scanner detector in the kernel.

Since if a port scanner can detect half open scanning, it must be run as a sni�er packet program. If we need

a port scanner and we also want the kernel disable promicouse which means that we can not use the sni�er

packet programi, the port scanner detector in kernel will be useful.

The main idea for the port scanner is that it use the feature that port scanner alway scanner a rang of ports

in a few seconds. And they report the opened port after scan. In this way, the scanner will scan many port

which do not listen in the remote machine. In the kernel, we can detect in the following code.

8.3.2 Port scanner detector in kernel

Let's have a look at the tcp port scanner.

/* in net/ipv4/tcp_ipv4.c */

int tcp_v4_rcv(struct sk_buff *skb, unsigned short len)

{

........

__skb_queue_tail(&sk->back_log, skb);

return 0;

no_tcp_socket:

#ifdef CONFIG_LIDS

lids_check_scan(skb->nh.iph->saddr,ntohs(th->dest));

#endif

tcp_v4_send_reset(skb);

discard_it:

.........

}

The lids_check_scan() take two parameters, one for the source address which cause the no_sock_error,

the other is the port on the machine which the source address want to communicate with but is not open

for server.

The main task of the lids_check_scan() is to statistic the error number made from the same source. But

lids_check_scan() do not check if the source address is a port scanner, it let the timer to do it. Now, let's

have a look at the lids_check_scan().

p y

/* in net/ipv4/lids_check_scan.c */

int lids_check_scan(__u32 addr,__u16 port)

{

...........

if((p = lids_find_scan(addr)) == NULL) {

p1 = &lids_scan_head;

p = (struct lids_scan*)kmalloc(sizeof(struct lids_scan),GFP_ATOMIC);

if(p == NULL) {

return -1;

}

while((p1->next)!=NULL)p1=p1->next;

/* init the structure. */

p1->next = p;

spin_unlock(p->lock);

p->next = NULL;

p->addr = addr;

p->counter = 0;

p->lower_counter = 0;

p->create_time = current_time;

/* init a timer to do the detect thing */

init_timer(&(p->timer));

p->timer.expires = LIDS_SCAN_TIMEOUT + current_time;

p->timer.data = (unsigned long) p;

p->timer.function = lids_proceed_scan ;

add_timer(&(p->timer));

}

/* add the counter when hit */

spin_lock(p->lock);

(p->counter)++;

/* we here defined the port < 1024 and > 1024 */

if(port < 1024)

(p->lower_counter)++;

spin_unlock(p->lock);

return 0;

}

From the above code, we can see the the function just maintant the list , so it is faster. In order to prevent

the DoS attack on the kmalloc(), we also need to limited the detected list. It may be a fault in this code,

but since the timer function � lids_proceed_scan update the list very fast � every 3 second once. So the

DoS attack is every di�cult to make the kernel confuse about which is the true scaner source.

9 Intrusion Response System

When we detect someone or some program violate the rules, we must respone to the action. In the current

LIDS, we can log the information via klog with the feature of anti-�ood loging. We also have the feature to

hang up the console which the misbehavious user on. In the future, we will add more response system to

the LIDS, not only in the kernel, but also in user space.

9.1 Allow logging in a security way

Most of the code and ideas is from solar desinger's Linux OpenWall project. Thanks solar.

With the traditional logging in the kernel, we use the printk(KERN_XXX) every time we need to print a

message to the console. But it is every easily used by other misbehivious to make a DoS attack to the kernel.

He can make the kernel running the printk very frequence and then make the �lesystem out of free space.

With the current security logging facility, we can just use the security_alert() in the kernel, let the function

do the other anti-DoS job.

You can have a look at the source at include/linux/kernel.h.

9.2 hangup the console.

This feature use with the security_log to make the user who violate the rules de�ned in LIDS quickly being

hangup. He have to relogin the system to continus. But what he have done have log into the system log �le

or also send to the adminstration by the mail tools developing by Boidi.

9.3 Notify the Administrator by mail and pager.

This feature is developed by Boidi now. With the tools, we can easy know what is wrong with the system,

we can response to the intrusion every quickly.

It has been released in lids-0.9pre1, it create a kernel thread to do the communicate things. For details, look

at the kernel source for LIDS.

10 Thanks .

First of all, I want to thank Kate Lee who always encourage me to continue writing the document and help

me correct many errants in this document.This document is dedicate to her.

Many thanks must go to Biodi Phillipe and Christophe Long who have make many contribut to the LIDS

project.

Many thanks also must go to all the LIDS users, without your encourge and feedback and those great ideas,

the project can not develop so well.

Finally, I want to thanks my supervisor - Prof. Suo Bai and Ph.d Dongbo Bu, without their helps, I can not

even start the LIDS.

